Numerical Study of Variation of Mechanical Properties of a Binary Aluminum Alloy with Respect to Its Grain Shapes †
نویسندگان
چکیده
To study the variation of the mechanical behavior of binary aluminum copper alloys with respect to their microstructure, a numerical simulation of their granular structure was carried out. The microstructures are created by a repeated inclusion of some predefined basic grain shapes into a representative volume element until reaching a given volume percentage of the α-phase. Depending on the grain orientations, the coalescence of the grains can be performed. Different granular microstructures are created by using different basic grain shapes. Selecting a suitable set of basic grain shapes, the modeled microstructure exhibits a realistic aluminum alloy microstructure which can be adapted to a particular cooling condition. Our granular models are automatically converted to a finite element model. The effect of grain shapes and sizes on the variation of elastic modulus and plasticity of such a heterogeneous domain was investigated. Our results show that for a given α-phase fraction having different grain shapes and sizes, the elastic moduli and yield stresses are almost the same but the ultimate stress and elongation are more affected. Besides, we realized that the distribution of the θ phases inside the α phases is more important than the grain shape itself.
منابع مشابه
Plastic deformation of 7075 Aluminum Alloy using Integrated Extrusion-Equal Channel Angular Pressing
Grain refinement improves the mechanical properties and formability of metals and alloys. So far, several different grain refinement methods have been proposed and studied. Severe plastic deformation is one of the most promising and efficient methods. Therefore, in the present study the possibility of imposing a two-step severe plastic deformation (Extrusion and Equal channel angular pressing) ...
متن کاملEnhancing the low cycle fatigue strength of AA6061 aluminum alloy by using the optimized combination of ECAP and precipitation hardening
In the present study, mechanical properties and low cycle fatigue behavior of a solid-solutionized AA6061 aluminum alloy produced by equal channel angular pressing (ECAP) process were investigated. The grain refinement after two passes of ECAP significantly increased the yield stress and ultimate tensile stress and decreased the ductility of the alloy. However, the improvement of low cycle fati...
متن کاملEvaluation of hardness and wear resistance of nano-sized titanium-carbide-reinforced commercially cast aluminum alloy matrices
Production of aluminum matrix composites is widespread because these material provide enhanced mechanical properties compared to aluminum. One the most important parameters of metal matrix composite production is uniform distribution of reinforcing nanoparticles in matrices using the stir-casting method. Second is ensuring high wettability, which is determined by evaluating the properties of ma...
متن کاملExperimental Investigation of Thermal Conductivity of Aluminum Alloy 3003 Produced by Equal Channel Angular Rolling Process
Equal channel angular rolling (ECAR) process is one of the methods that have been used to make ultra-fine materials by imposing severe plastic deformation. After repeating the process several times, a large effective strain is applied to the sample that can cause decreasing the grain size and improving the mechanical and physical properties of the metal. In this study, thermal conductivity of t...
متن کاملExperimental Investigation of Thermal Conductivity of Aluminum Alloy 3003 Produced by Equal Channel Angular Rolling Process
Equal channel angular rolling (ECAR) process is one of the methods that have been used to make ultra-fine materials by imposing severe plastic deformation. After repeating the process several times, a large effective strain is applied to the sample that can cause decreasing the grain size and improving the mechanical and physical properties of the metal. In this study, thermal conductivity of t...
متن کامل